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The instability of an annular thread of fluid 

By SIMON L. GOREN 
Department of Chemical Engineering, the Johns Hopkins University, Baltimore 

(Received 27 June 1961) 

The instability of an annular coating of liquid on a wire or on the inside of a small 
tube subject to capillary forces at  its free surface is discussed. It was found that 
for given values of sla, the ratio of the two radii of the annulus, and S = pTa/p2, 
the reciprocal of the square of the Ohnesorge number, there is a disturbance of 
a certain wavelength (2nalh) *, which grows more rapidly than disturbances of 
any other wavelength. One would therefore expect the liquid to break up into a 
regular pattern of drops with spacing given by this wavelength. The dependence 
of (2na/h)* on s/a and S has been calculated and is presented graphically. 
Experimental observations on drop formation on wires and in tubes which agree 
with the calculations are given. 

Introduction 
An interesting photograph in the book Soap Bubbles by Boys (1959) shows 

a segment of a spider’s web on which droplets of a sticky liquid are regularly 
spaced. This liquid was originally exuded by the spider as a thin annular film, but 
capillary forces then caused it to gather into droplets. The high viscosity of the 
liquid and the presence of the solid core point to the importance of viscous forces. 
One effect of these is the reduction of the speed of droplet formation. When the 
viscosity of the liquid is very large and the liquid layer thin, droplets are formed 
slowly, and inertial effects are negligible in comparison with viscous effects. 

Droplet or ripple formation can also occur when a thin liquid coating is applied 
to a wire or a thread, as, for example, in the coating of wires with molten plastics 
for insulation or the coating of synthetic fibres with water for lubrication. Again, 
droplets or ripples can be formed on the inside of a small tube from the thin 
liquid coating left behind when either the liquid drains from the tube or a large 
air bubble passes through the tube. Both of the above geometries are found in 
cylindrical wetted wall columns, used in experimental gas-absorption studies, but 
unless the flow rate is exceedingly small, the ripples produced will be modified 
appreciably by the flow. 

The mathematical description of this phenomenon follows those given by 
Rayleigh (1879, 1892), Weber (1931) and Tomotika (1935) for similar problems. 
In  this paper we shall consider a long cylindrical wire (tube) uniformly coated 
with a liquid of viscosity p, density p, and surface tension T; the inner and outer 
(outer and inner) radii of the liquid annulus are s and a, respectively. We shall 
discuss the instability of the liquid annulus when it is subjected to infinitesimal 
axially symmetric disturbances. It is necessary to consider only a single Fourier 
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component corresponding to a wave along the axis of the annulus, since any 
infinitesimal disturbance can be represented by an appropriate superposition of 
such components. The linearized equations of motion contain time only through 
first derivatives with respect to time, and consequently admit of solutions con- 
taining an exponential time factor eid.  The boundary conditions on the velocities 
at the solid surface and the stresses a t  the free surface are homogeneous, and we 
therefore have an eigenvalue problem with in and A, the wavelength, as para- 
meters. If the real part of in is positive, zero, or negative the disturbance initially 
is amplified, neutrally stable, or damped, respectively. Solution of the charac- 
teristic-value equation gives the growth rate of unstable wave-like disturbances 
as functions of their wavelengths, and if the initial amplitudes of extant minute 
disturbances are of the same magnitude, droplet formation is controlled by the 
particular wave which grows most rapidly. 

Rayleigh (1879) treated the interactions of inertial and capillary forces acting 
on a cylinder of an inviscid liquid in the absence of an atmosphere, and has shown 
that the most rapidly growing disturbance is the one for which 2nulA = 0.696, 
where u is the initial radius of the liquid cylinder and h is the wavelength of the 
disturbance. Rayleigh (1892) also discussed the instability of a cylinder of a 
viscous liquid without inertia, and found that 2mlh = 0 for the most rapidly 
growing mode. These problems are limiting cases of the problem later treated by 
Weber (1931) in which he considered the break-up of a jet of fluid with viscosity y ,  
density p, and surface tension T. According to his theory, the most rapidly 
growing mode is given by 2nulA -N 0-707{1+ (9y2/2pTa)i)-*. Tomotika (1935) 
considered the interaction of viscous and capillary forces acting on a cylinder of 
a viscous liquid surrounded by another viscous liquid, and found the controlling 
mode to be a function of the ratio of the viscosities of the two fluids. For the 
limiting cases when this ratio is either zero or infinite, the most rapidly growing 
disturbance is given by 2nralA = 0, but for a finite value of the ratio, 2nu/A is non- 
zero. More recently, Ponstein (1959) has treated jets of fluid which are in a state 
of solid rotation, and has calculated the decrease in the stability of a solid jet and 
the increase in the stability of a ‘hollow, infinitely thick’ jet with an increase in 
angular velocity. He also considered annular jets with both surfaces free. It is of 
interest to note that in some cases the non-axially symmetric disturbances are 
more unstable than axially symmetric ones, whereas in non-rotating jets only 
axially symmetric disturbances are unstable. 

Theory 

co-ordinates ( r ,  9, z )  for axially symmetric motions are 
With the usual notation, the equations of motion and continuity in cylindrical 

aulat+uauiar+wau/az = -p-iaplar+ v(a2ular2+r-iaujar-u/r2+a 

aw/at+uaw/ar+waw/aZ = -p-lapjax+v(a2w/ar2+r-law/ar+ azWiaz2), az2)7} 

and auiar + u/r + aw/az = 0. (2) 

We assume that the motions are proportional to e+*+ikz and sufficiently small that 
squares and products of the velocity components can be neglected. The wave- 



The instability of an annular thread of jluid 311 

length h of the axisymmetric disturbance is related to the wave-number k by the 
relation h = 2n/k. The solution to the equations of motion under these conditions 
has been given by Tomotika, for example. (The notation adopted here is that used 
by Tomotika.) 

The qontinuity equation is satisfied by a stream function, $, such that 

u = r-l(a$/az) and w = --r-l(a$/ar). (3) 

Eliminating the pressure from the two equations of motion and substituting the 
above expressions for u and w gives the linearized differential equation for $ 

aD$/at = VDD$, (4) 

where ( 5 )  

The solution to this equation with the assumed t and z variation is 

1c. = {AlrIl(kr) + B,rK,(kr) +A2rIl(klr) +B2rK,(k,r)}ein"+ikz, (6) 

where k2, = kz+ in/v. (7) 

I,(%) and K,(x) are modified Bessel functions of order n, and A,, B,, A,, B2 are 
constants to be determined by the boundary conditions. 

The boundary conditions for a wire (tube) coated with liquid are the following. 
(1) There is no slip at the solid boundary of the liquid annulus, or 

( 2 )  The tangential stress at the free surface of the liquid is zero, or 

(3) The change in normal stress across the free surface is due to the latter's 
curvature and the interfacial surface tension. Thus 

Here R, and R, are the principal radii of curvature of the free surface and p is the 
hydrostatic pressure. When p and ( l/Rl + l/R2) are expressed in terms of the 
stream function, (10) becomes 

(a2D - inpa2/p - 2k2a2) $ + 2k2a2$ + P W P 2  ?-- (1 - k2a2) k2a2$] = 0.  (1 1) 
W a 2 1 P  r=a 

(Of course, if the fluid is inviscid, the boundary conditions of zero tangential 
velocity at the solid surface and zero shear stress at the free surface must be 
dropped, consistent with reducing the order of the differential equation for $from 
four to two.) 

Application of these boundary conditions leads to a system of four simultaneous 
linear algebraic equations in the constants A,, B,, A,, B, which has a non-trivial 
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solution only if the determinant of the coefficients vanishes. This gives the 
following relationship between in and k 

I,(W II(k1s) K l (W Kl(k1S) I 

ks I, (ks) kl sW1 8) - k~Ko(ks) - klsK,(kls) i 
2k2a211(ka) (k2a2 + k2,a2) Il(kla) 2k2a2K,(lca) (k2a2+ k2,a2) Kl(kla)  1 = 0,  ( 1 2 )  

4 F! F3 F4 

where 

I pTa'p2 (Pa2 - 1) f l (ka) ,  
inpa2/p 

ka 
Fl = 2kaI;(ka) f--- 

+ i- 

F! = 2klaI;(k,a)+ P W P 2  (k2a2- l )I l (kla) ,  

113) 
w a 2 / l u  

inpa2/p P W P 2  
ka inPa IP 

Fa = 2kaK;(ka) - ___ K,(ka)+- (k2a2- l )Kl (ka) ,  

P W P 2  F4 = 2k,aK;(kla) + 7- (k2a2 - 1) Kl(k,a), 
w a 2 h  

and where we can write 

k:a2 = k2a2 + inpaZ/p, ks = ka . s/a. (14) 
Equation ( 1 2 )  can thus be regarded as a relation between four dimensionless 

variables: (i) sla, a geometrical parameter; (ii) ka = 2na/h, a wavelength para- 
meter; (iii) pTa/p2 = 8, the ratio of the inertial forces to the viscous forces times 
the ratio of the surface-tension forces to the viscous forces (the Ohnesorge 
number = S t ) ;  (iv) inpa2/u = N ,  the growth-rate parameter. If the real part of 
N is positive, zero, or negative, the disturbance initially is amplified, neutrally 
stable, or damped, respectively. For amplifying disturbances and for fixed values 
of s/a and 8, we seek that value of 2nalh which maximizes the real part of N ,  and 
expect the resulting pattern of droplets to be characterized by this value of 
2nalh. Quantities pertinent to the most rapidly growing mode will be denoted by 
an asterisk. 

Equation ( 1 2 )  is a complicated implicit equation for N ,  which occurs in the 
argument of some of the Bessel functions, such as Il(kls), and cannot be solved 
explicitly for N except in two limiting cases, the case of negligible inertia and the 
case of negligible viscosity. As the inertial forces become negligible (i.e. p -+ 0) ,  
S -+ 0 and N -+ 0, but N / S  remains a finite function of s/a and 2nalh. Similarly, 
as the viscous forces become negligible (i.e. p -+ o), S -+ 00 and N -+ co, but NISg 
remains a finite function of s/a and 2n-alh. These cases will now be treated in 
detail, but one should note first that although ( 1 2 )  cannot be solved explicitly for 
N ,  it  can be solved explicitly for S ,  a fact which will be useful in discussing the 
general case. 

Case 1 .  Negligible inertia 
If we put N = 0 directly into ( 1 2 ) ,  the first column becomes identical with the 
second, and the third with the fourth, giving an indeterminate form. The limiting 
equation can be obtained using the procedure of Tomotika. The group N is 
regarded as indefinitely small, and the various functions are expanded in Taylor 
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series of this group. The resulting determinant is simplified, divided by N 2 ,  and 
the limit taken as N approaches zero. In  this way, we obtain the equation 

1 I,&) ksIi(ks) Kl@) ksK;( ks) 
I I,(ks) I,(ks) + ksIi(ks) -K,(ks) - K,(ks) - k d q k s )  

1 Il(ka) I,(ka) + kaI;(ka) K,(ka) K,(ka) + kaKi(ka) 

~ GI G2 G3 G4 

= 0, (15) 

I 

where 

G, = 2{kaK;(ka) + k2a2K;(ka) + kaK,(ka)} + inpa21p pTa‘P2 (Pa2 - 1) kaKi(ka1.j 

Using the differentiation and recurrence formulae for Bessel functions, one 
may express the growth-rate parameter, N ,  after considerable simplification, as 

where 

A, = - 1 + 2ks{Ko(ks) I,(ka) + I,(ks) K,(ka)}{K,(ks) Il(ka) - Il(ks) K,(ka)} 

+ kV{K,(ks) I,(ka) + lo(ks) Kl(ka)}2- k2s2 { K l ( W  I l W )  - I,(W K,(ka)}2, 
(18) 

and 
A2 = - ( l + k  s 2 ) + 2ksk2u2{K,(ka) Il(ks) + Io(ka) Kl(ks) }  {K,(ka) Io(ks) 

- I,(ku) K,(ks)} + k2s2k2u2{K,(ka) I,(ks) + I,(ka) Kl(ks)}2 

- k2s2k2a2{Ko(ka) Io(ks) - Io(ka) Ko(ks)}2. (19) 

The same result may be derived by neglecting originally the inertial terms in 
the equations of motion and in the boundary conditions. Then the stream function 
becomes 

(20) $ = {AlrIl(kr) +B,rK,(kr) +A,r210(kr) + B2r2K,(kr)}eint+ikz, 

the solution to DD$ = 0. 

Case 2. Negligible viscosity 

The relation between N/S* and s/a and %a/s for an inviscid fluid can be derived 
from (12) by taking the limit of this equation as N and S approach infinity. 
However, it is simpler to deal with the inviscid equations of motion directly, and 
it can be shown that the two methods yield the same result. 

Equation (4) becomes D$ = 0 for an inviscid fluid, and has the solution 

I++ = {AlrIl(kr) + BlrKl(kr)}einL+ikz. (21) 
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The boundary conditions become 

and 

Again, when @ is substituted into these boundary conditions, we obtain a set 
of two homogeneous linear algebraic equations in A,, B, which has a non-trivial 
solution only if the determinant of the coefficients vanishes. This leads to the 
relation 

I I I I 

271alA 

FIGURE 1. Plot of @,.,lac aa 8 function of 277aJA for s/a = i. 

These equations are valid for s/a < 1, i.e. for the geometry of a solid core with a 
liquid coating. When s/a > 1, the geometry is that of a liquid annulus contiguous 
with the inside of a cylindrical tube. As s/a passes through unity, the system 
transforms from a very thin liquid layer possessing positive curvature (lfu) at its 
free surface to one possessing negative curvature ( -  l / a )  at its free surface. This 
changes the sign of the last term in (11); thus, to obtain N as a function of ka, 
$/a and 8 when s/a > 1, one needs merely to prefix the right-hand side of (17) or 
(24) with a minus sign. 
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Both @vise and (Dinviscid, which give the behaviour of NIS when inertial forces 
are negligible and of N/S* when viscous forces are negligible, respectively, are 
positive real numbers when 0 < 2na/h < 1, and are negative when 2na/h > 1. 
Accordingly, disturbances with wave-numbers between zero and one are unstable 
and those with wave-numbers greater than one are stable. For a given value of 
s/a, av iSc  (and @inviscid also) has a maximum in the interval 0 < 2na/h < 1. 
The values (2na/A)* corresponding to the maxima have been determined by 
evaluating @,iSc and @inviscid a k  functions of 2nalA and using parabolic inter- 
polation about the maximum for several values of s/a as a parameter. Figure 1 
shows QviSc plotted against 2na/h for $/a = + as a typical plot. The final results are 

8/a 

FLGURE 2. Plot of (277a/h)* as a function of ./a for the two limiting cmes, S = 0 
andS = co. 

given in table 1, where the calculated values of (2na/h)* and @&,c and at  
the maxima are listed for the several values of s/a. In  figure 2 the value of (2na/h)* 
so calculated is plotted against a/a for both limiting cases. 

In  both cases, for a given non-zero value of s/a, there is a non-zero value of 
(2na/h)* characteristic of a most rapidly growing disturbance. In  accordance 
with the above, we consequently expect the liquid to form regularly spaced 
droplets along the wire or tube with finite spacing. 

Case 3. General case 

In  general, S is neither zero nor infinite, and the maximum value of N ,  N*,  and the 
most rapidly growing disturbance, (2na/h)*, are functions of S as well as sla. 
N is proportional to S as S --f 0, and proportional to S* as S -+ a. We may estimate 
a t  what value of S,  9 say, the inertial and viscous effects are of comparable 
magnitude by simultaneously solving the two equations 

The values of JV* and Y* so calculated are also presented in table 1. 
N = S@visc, N = S&@inviacid. (25) 
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In  the limit as s/a -+ 0 (Weber's analysis for a solid jet), (27ra/h)* is a con- 
tinuously increasing function of X, going from 0 when S = 0 to 0.696 when 
S = co. The same is true in the limit s/a + co (a hollow jet), the range there being 
0 to 0.484. It is therefore reasonable to assume that, for finite S,  the curve 

sla (anal4 * G i C  ( 2na/h) * @&lacid M* Y* 
0 0 0.167 0.697 0.343 0.705 4.22 

- - - - 10-6 0.441 0.101 
10-s 0.486 0.085 - 

10-8 0.521 0.072 
10-1 0.586 0.046 0.697 0.342 2.54 55.3 

0.670 0.0090 0.702 0.302 10.1 1130.0 
0.707 0 0.707 0 03 03 1 

1.5 0.672 0.0087 
2 0.602 0.047 0.674 0.555 6.53 13.9 
3 - - 0.609 0.722 - - 

a3 0 0.500 0-484 0.820 1.34 2.69 

.- - - 
- - - - 

9 
- - - - 

TABLE 1. (27ra/A)*, (D$= and for various values of ala. 

S*IY* 

FIGURE 3. Plot of N*/JV* as a function of S*/9'* for sla = 9, - Equation (12) ; 
-.-.- N*/J f*  = S*/Y*;  -...- N*/J f*  = (S*/Y*)*. 

(27ra/h)* versus s/a lies intermediate to the curves for S = 0 and S = co. If this is 
true, then in the range of greatest practical interest, 0.2 < s/a < 1-5, the wave 
length where maximum instability occurs is only weakly dependent upon S as 
can be seen from figure 2. To avoid a lengthy trial and error calculation the 
following procedure was adopted. For a given value of sla, (27ru/h)* was taken as 
the average for the S = 0 and the S = 03 cases. Using this value, and assuming 
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values of N*, one can calculate S* explicitly from (12). The results of this calcula- 
tion are presented in figure 3, were N*/M* is plotted against S*jY* for s /a  = +. 
With the above assumption, the approximate value of N* so calculated is a good 
estimate of the true value because we are interested in the maximum value of N 
with respect to 27ra/h, i.e. the value of 27ra/h for which aN/a(27ra/h) = 0. Thus 
a small error in (2m/h)* will make only a very small error in N*. 

Experiment 
Experiments in which drops formed on wires and in tubes were done. In  all 

cases S was sufficiently small for the theory for negligible inertia to be applicable. 

Wire experiments 
For the wire experiments, a commercial brand of honey (viscosity = 70 P as 
measured with a Brookfield viscometer, density = 1.48g/cm3 as measured by 
weighing a known volume of liquid, and surface tension = 68 dynjcm as measured 
with a DuNouy tensiometer) was brushed onto metallic wires with a small paint 
brush. The two wires used were of radius 0.0127 and 0.0019 cm. Upon application 
of the liquid, stationary waves were soon observed on the surface of the liquid, 
and the amplitude of these waves grew until a regular array of droplets was 
formed. Frequently, as described by Boys, smaller drops would lie between the 
larger ones. In the wavelength measurements the smaller drops, which appeared 
to be produced from the thin residual layer connecting the larger ones, were 
neglected. At later times, droplets were observed to coalesce and a string of 
droplets would lose its regularity. 

After the drops had formed, the wires and arrays of drops were photographed. 
With the smaller wire, photographs were taken through a microscope with a 
magnification of 25 x . The wavelengths were measured from the photograph and 
the volume of a given drop determined by numerical integration over a wave- 
length of the square of the radius, also measured from the photograph. Only 
experiments for which the wavelengths and drop volumes of several consecutive 
drops along the wire were constant to less than 5 yo were accepted. 

The results of several experiments, iogether with the theoretical curve, are 
shown in figure 4, where (2na/h)* is plotted against s/a. For comparison, the 
theoretical results of Rayleigh, Weber and Tomotika for non-supported columns 
of liquid are also shown. The two theories of Rayleigh give (27ra/h)* = 0.696 and 
(37ra/h)* = 0 for the inviscid and viscous cases respectively. For Weber's theory, 
the largest expected value of (2na/h)* is 0.067 corresponding to the largest value 
of S used. It should be remembered that the two Rayleigh theories are superseded 
by Weber's theory, and any comparison should be made with the latter, rather 
than the former. For Tomotika's theory, the surrounding fluid is taken to be air 
(viscosity 1.8 x 10-4P) so that &/,a = 3.9 x lo5; the value of (2na/h)* corre- 
sponding to this ratio was estimated to be 0.05. 

Tube experiments 

The tube experiments were performed with a solution of glycerine and water 
(viscosity = 4.1 1 P, density 1-1 g/cm3, and surface tension 64 dynjcm at 23" C) in 
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tubes of an inner radius of 0*0387,0*0522  and O-0744  cm. In a given experiment,
the capillary tube was filled with the liquid which was then blown out by con-
necting one end of the tube to a pressure source. In this way, a thin coating of
liquid was left on the inner wall of the tube. The speed, U, of the meniscus was
determined by measuring the time taken by the meniscus to traverse a known
distance. The amount of liquid remaining could then be determined from an
empirical relationship between m = 1 - (a/~)~, the fraction of liquid remaining,
and the dimensionless group ,uU/T as given by Taylor (1961). Wavelengths were
measured directly by measuring the distance occupied by a given number of
drops. Again, only measurements for which several consecutive groups of drops
were uniform were accepted.

0.6

0.2

Tubes -

o--o-o-o” oo8 om
8 * 3

.-.-.-_-.-  ._._ __._

0
0 @2 @4 @6 04 1.0 1.2 1.4

sla

FICWRE  4. Comparison of experimental data with present theory and with theories for
unsupported columns of liquid. - present theory for negligible inertia; -.---
Rayleigh’s theory for an inviscid  column of liquid, (2na/A)*  = O-696,  and hollow jet,
(2na/A)*  = 0.484; -...- Weber’s theory, (2sra/A)*  = 0.067 for S = 3.8 x 10”‘;  ---
Tomotika’s theory, (2~a/h)* = 0.05 for p’/p = 4 x 106; Rayleigh’s theory for a viscous
column of liquid, (2na/A)*  = 0.

The results are also shown in figure 4. For comparison, the corresponding
theoretical results of Rayleigh (i.e. the limit of (2na/h)*  in our equations as ~/a
becomes infinite) are O-484  and 0 for the inviscid and viscous cases respectively.

In experiments on the motion of long bubbles in tubes, Bretherton (1961)
observed that the rare meniscus had a ‘wave-like appearance ’ which was easily
discernible at large film thicknesses. A theory based on the lubrication approxi-
mations predicts the existence of this waviness. In view of the instability of the
liquid annulus, however, it is possible that the wave is a result of the instability
appearing at the rear meniscus, the liquid annulus there having been in existence
long enough to afford small disturbances a chance to grow.

As seen from figure 4, the experimental points are consistently slightly low.
Possible explanations for this are the non-uniformity of the liquid coating, and
the coalescence or partial coalescence of drops. These two effects would tend to
make the observed values of (2na/A) lower than expected, for in the first case the
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importance of the solid core would be lessened making Weber’s analysis more 
applicable, and in the second case an overestimate of h results in an underestimate 
of 2nalh. A third possible explanation is the neglect of higher-order terms in the 
perturbation analysis. The direction of this effect is not clear, but it must be 
emphasized that measurements were made on the disturbances only after they 
had become quite large. 

The work reported here was under the general direction of Professor J. Gavis 
and was supported by a grant from the Research Corporation. During the course 
of this work the author was in receipt of the Project Vanguard Fellowship 
(1960-61) of the Martin Company. 
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